Mathematical Foundations of Computer Science

*1.	A class of 30 students	occupy a classroom cor	ntaining 5 rows of sea	ats, with 8 seats in each
	row. If the students sea	t themselves at random.	, the probability that t	he sixth seat in the fifth
	row will be empty is			
	(a) 1/5	(b) 1/3	(c) 1/4	(d) 2/5
*2.	The probability that a n	number selected at rando	om between 100 and 9	999 (both inclusive) will
	not contain the digit 7 i	is		
	(a) 16/25	(b) (9/10) ³	(c) 27/75	(d) 18/25
*3.	0.152525252 is same	as		
	(a) 52/99	(b) 151/990	(c) 51/99	(d) none of the above
*4.	A class is composed of	2 brothers and 6 other	boys. In how many v	vays can all the boys be
	seated at a round table	so that the two brothers	are not seated togeth	er?
	(a) 3600	(b) 3000	(c) 2600	(d) 2050
*5.	The nth order difference	of a polynomial of deg	gree n is	
	(a) zero	(b) one		
*6.	Each coefficient in the	equation $ax^2 + bx + c =$	0 is determined by the	rowing an ordinary die.
	The probability that the			
	(a) 57/216	(b) 27/216	(c) 53/216	(d) 43/216
*7.	The sum of all numbers	greater than 10,000 for	rmed by using the dig	its 0, 2, 4, 6, 8, no digit

(c) 2449002

(d) 8411420

being repeated in any number, is

(b) 2742790

(a) 5199960

(d) 18.25m

*8.	For a game in which	2 partners oppose 2 ot	her	partners, six men	are	available. If every
	possible pair must play	against every other pair	r, th	e number of game	s to	be played is
	(a) 36	(b) 45	(c)	42	(d)	90
*9.	Let the elements g, h be	elong to a group G. If C)(h)	is 2, then O(ghg-	1) is	
	(a) 0	(b) 1	(c)	2	(d)	4
10.	At any time, the total n	umber of persons on ea	rth 1	who have shaken l	hands	s an odd number of
	times has to be					
	(a) an even number	(b) an odd number	(c)	a prime number	(d)	a perfect square
11.	Which of the following	are irrational numbers?	?			1
	(a) $\sqrt{2}$	(b) e	(c)	10.2	(d)	1.25252525
12.	The function $f(x) = x ^2$	(x+1)				1
	(a) is less than 1, for a		(b)	equals $f(-x)$		
	(c) equals $1 - f(1/x)$			none of the above	e	
*13.	The domain of the func	tion $\log (\log \sin (x))$ is				
	(a) $0 < x < \pi$	2	(b)	$2n\pi < x < (2n +$	l)π,	nεN
	(c) empty set			none of the above		
*14.	The system of equation	s	2			
	x + 2y + 3z = 4					
	$x + \lambda y + 2z = 3$					
	$x + 4y + \mu z = 3$					
	has infinite number of	solutions if				
	(a) $\lambda = 2$; $\mu = 3$		(b)	$\lambda = 2$; $\mu = 4$		
	(c) $3\lambda = 2\mu$		(d)	none of the above	e	
*15.	Let R be a symmetric a	nd transitive relation or	as	et A. Then		
	(a) R is reflexive and h	ence an equivalence re	latio	n		
	(b) R is reflexive and h	ence a partial order				
	(c) R is not reflexive a	nd hence not an equiva	lenc	e relation		
	(d) none of the above					
*16.	The number of element	s in the power set of th	e se	t		
	$\{\{\{\}\}, 1, \{2, 3\}\}$ is					
	(a) 2	(b) 4	(c)	8	(d)	3
*17.	If $4(\log_9 3) + 9(\log_2 4)$	= $10(\log_x 81)$, then x is				
	(a) 2		(b)	ϵ		
	(c) 7		(d)	none of the abov	e	
*18.	The length of the longe	st pole that can be mad	e ins	side a hall of lengt	th 18	m, breadth 6m, and
	height 4.5m is					

(c) 20m

(a) 17.5m

(b) 19.5m

represent (d) all of the above

*38. Suppose $A_1, A_2, \ldots A_{30}$ are 30 sets, each with 5 elements, and $B_1, B_2, \ldots B_n$ are 'n' sets, each with 3 elements.

Let
$$U_{i=1}^{30} A_i = U_{j=1}^n B_j = S$$
.

Each element of S, belongs to exactly 10 of the A_i 's and to exactly 9 of the B_i 's. Then 'n' is

(a) 25

(a) 1 (c) n

(a) C × S

(a) 22°

(a) 0.064

(a) 1.5

(a) 1

happens at least once is

(d) none of the above.

(b) 45

(c) 40

(d) 20

39.	Which of the following remarks about an ill-	conditioned system	of equations are true?
	(a) Small change in coefficient will result in	large change in so	lution.
	(b) A wide range of solutions can approxima	tely satisfy the equ	ations.
	(c) If slope of two lines are almost same, th	ey make up an ill-	conditioned system of equa-
	tions.		
	(d) None of the above.		
°40.	If the cube roots of unity are 1, ω , ω^2 , then t	he roots of the equ	ation $(x - 1)^3 + 8 = 0$, are
	(a) -1 ; $1 + 2\omega$, $1 + 2\omega^2$	(b) $1, 1 - 2\omega, 1$	$-2\omega^2$
	(c) -1 , $1-2\omega$, $1-2\omega^2$	(d) -1 , $-1 + 2\omega$	$-1 + 2\omega^2$
¢41.	f(x) and $g(x)$ are two functions differentiable	in [0, 1] such that j	f(0) = 2; $g(0) = 0$; $f(1) = 6$;
	and $g(1) = 2$. Then there must exist a constant	t C in	
	(a) $(0, 1)$, such that $f'(C) = 2g'(C)$		
	(b) [0, 1], such that $f'(C) = 2g'(C)$		
	(c) (0, 1), such that $2f'(C) = g'(C)$		
	(d) [0, 1], such that $2f'(C) = g'(C)$		
°42.	Let f be a one-to-one function with domain		
	exactly one of the following statements is tru	e and the remaining	g 2 are taise:
	f(x) = 1		
	$f(y) \neq 1$ $f(z) \neq 2$		
	Then $f^{-1}(1)$ equals		
	(a) 2 (b) x	(c) y	(d) z
443	Let f be a twice differentiable function such t	1-7 2	(d) c
40.	f''(x) = -f(x) and $f'(x) = g(x)$. Let $h(x) = (f(x))$		5) = 11, then $h(10)$ is
	(a) 8 (b) 9	(c) 10	(d) 11
		. ,	
44.	If A and B are two events such that $P(A) > 0$	and $P(B) \neq 1$, then	P(A/B) equals
	(a) $(1 - P(A \cup B)) / P(\bar{B})$	(b) $(1 - P(A \cup I))$	(B)) / $P(B)$
	(c) $(1 - P(A \cap B)) / P(\overline{B})$	(d) $(1 - P(A \cap B))$	(B)) / $P(B)$
45.	i^i , where i is $\sqrt{-1}$, is		
401	(a) a pure imaginary number	(b) a complex no	umber
	(c) an integer	(d) a real number	
46.	If p, q, r are three real numbers, then	(u) u rous similor	•
10.	(a) $\max(p, q) < \max(p, q, r)$	(b) $\max(p, a) =$	(p + q + p - q) / 2
	(c) $\max(p, q) < \min(p, q, r)$	(d) none of the a	4 , , , , , , , , , , , , , , , , , , ,
¥47.	The number of I's in the binary representation		
	(a) 8 (b) 9	(c) 10	(d) 12

48.	A determinant is chose element either 0 or 1			ts of order 2 with each chosen determinant is
	positive is			
	(a) 1/2	(b) 2/7	(c) 3/16	(d) 7/16
*49.	The number of permut	ations of 'n' different t	hings taken not more	than 'r' at a time, with
	repetitions being allow			
	(a) $(n^r - 1) / (n - 1)$		(b) $(n'-1)/(n-1)$!
	(c) $n(n'-1)/(n-1)$		(d) $(n^r - 1) / (n - 1)$	
50.	A relation R is defined	in $N \times N$, such that $(a,$	b) $R(c, d)$ iff $a + d =$	b + c. The relation R is
	(a) reflexive but not tr	ansitive	(b) reflexive and trans	itive, but not symmetric
	(c) an equivalence rela	tion	(d) a partial order	
*51.	If $\log_5 10 = \log_7 x(\log_n$	m), then the values of	x, m, n are	
	(a) 10, 7, 5	(b) −1, 2, 3	(c) 7, 5, 3	(d) 7, 5, 8
*57	If $\sqrt{5} + \sqrt{7} + i$, is one	of the roots of the any	sation $f(x) = 0$ with re	tional coefficients then
32.				monar coerretents, then
	the degree of the given (a) 5	-		(d) ĝ
*53	Consider the equation :	(b) 6 _u ⁷ . 2 _u 5 . 7 _u 4 . _u 3 a .		(u) o paginary roote will be at
33.	least	1 - 21 + 11 + 1 - 9	= 0. The number of m	laginary roots will be a
	(a) 2	(b) 3	(c) "4	(d) 5
*54.	If $f(a)$ and $f(b)$ are of			\-/ ·
	(a) has either no root of	_		
	(b) must have at least		_	
	(c) has either no root of			
	(d) has odd number of			
*55.	The equation $x^5 + x^3 -$			
	(a) exactly 3 real roots			
	(b) no complex root	and a complete		
	(c) no real root			
	(d) exactly 2 real roots	and 3 complex roots		
*56.	Any polynomial of eve	•	ast term is negative ar	nd the coefficient of the
	highest power is positive	_		
	(a) 2 positive roots		(b) 2 negative roots	
	(c) 1 positive root and	1 negative root	(d) 2 positive and 1	negative root
*57.	When the polynomial f	(x) is divided by $(x - \alpha)$	$(x - \beta)$, $\alpha \neq \beta$ then the	ne remainder is given by
	(a) $((x - \beta) f(\alpha) - (x - \beta) f(\alpha)$	$-\alpha$) $f(\beta)$) / $(\alpha - \beta)$	(b) $((x - \alpha) f(\beta) - (x - \alpha) f(\beta) = 0$	$(\alpha - \beta) f(\alpha) / (\alpha - \beta)$
	(c) $(f(\alpha) - f(\beta)) / (\alpha$	-β)	(d) $((x-\alpha)f(\beta)+($	$(\alpha - \beta) f(\alpha) / (\alpha - \beta)$
*58.	log 0 is			
	(a) -∞		(b) +∞	
	(c) depends on the bas	e	(d) undefined	

59.	If $a_1, a_2,, a_n$ are the requals	oots of the equation x +	- nax	$-b = 0$, then $(a_1 - b) = 0$	a ₂)($a_1 - a_3$) $(a_1 - a_n)$
	(a) $n(a+a_1^{n-1})$	(b) $(a+a_1^{n-1})/n$	(c)	$n(a-a_1^{n-1})$	(d)	$(a-a_{\parallel}^{n-1})/n$
60.	The set of all natural no	umbers is not closed wi	ith re	espect to		
	(a) subtraction	(b) division	(c)	addition	(d)	multiplication
*61.	If $ a-b < n$ and $ b-a < n$	$c \mid < m$, then $\mid a - c \mid$ is				•
	(a) < n + m		(b)	< maximum of m	n	
	(c) $<$ minimum of m , n			< mn		
62.	The domain of the func	tion $1/\sqrt{(1-x)(x-2)}$	is			
	(a) (1, ∞)	(b) (1, 2)	(c)	(2, ∞)	(d)	(0, 2)
*63.	A and B play a coin too wins. If A starts, the pre			in alternately. The	firs	t one to get a head
	(a) 1/3	(b) 1/2		2/3	(d)	1/4
*64					(u)	1/4
-04.	The number of trailing				(4)	53
	(a) 49	(b) 40	(c)		(d)	
*65.	The determinant of a ma	atrix has 720 terms (in t	he u	nsimplified form).	The	order of the matrix
	is	A) 6	(-)	7	/ IN	0
	(a) 5	(b) 6	(c)	/	(d)	8
66.	The error in using Simp	_		* 4		.5
	(a) h^2 .	(b) h ³	(c)	h ⁻	(d)	h"
*67.	The domain of the func	tion $1/\sqrt{ x -x}$ is				
	(a) (-∞, 0)	(b) (0, ∞)	(c)	(0, x)	(d)	(0, 1)
*68.	A bag contains 10 white probability that one of the				awn	in succession. The
	(a) 2/3	(b) 4/5	(c)	1/2	(d)	1/3
*69.	The iteration formula to	find the square root o	far	ositive real number	er b.	using the Newton-
	Raphson method is	•				
	(a) = -2 (n + 1) (2)	·	(h)	$x_{k+1} = (x_k^2 + b)/2$		
	(a) $x_{k+1} = 3 (x_k + b) / 2$	x_k	(0)	$x_{k+1} = (x_k + b)/2$	X_k	
	(c) $x_{k+1} = x_k - 2x_k / (x_k - x_k)$	$(a^2 + b)$	(d)	none of the above		
70.	If $ x - 1 + x - 2 + x $	$-31 \ge 6$, then				
	(a) $x \le 0$ or $x \ge 4$	(b) $1 \le x \le 3$	(c)	$x \le 3$	(d)	$x \ge 1$
71.	The number of real root	ts of the equation $ x ^2$	- 31 x	1 + 2 = 0 is		
	(a) 1	(b) 2	(c)		(d)	4
					-	
*72.	$-20\sqrt{-\sqrt{20-\sqrt{\cdots}}}$ equ	ials				

(c) -20

(b) -8

(d) -35

- (b) round-off errors can be minimized
- (c) ill-conditioned system can be handled efficiently
- (d) none of the above
- *86. Choose the correct statements.
 - (a) Any 7 integers chosen from 1 to 12 should have at least 2 of them summing up to 13.
 - (b) Any 11 integers chosen from 1 to 20 should have at least 2 numbers, such that one is a multiple of the other.
 - (c) 10 integers, 1 to 10 arranged at random in a circle should have at least 3 successive numbers summing up to greater than 16.
 - (d) None of the above.
- Choose the correct statements.
 - (a) If two graphs G1 and G2 are isomorphic, then they should have the same number of vertices and edges.
 - (b) If two graphs have the same number of nodes and edges, they have to be isomorphic.
 - (c) Loops can't be present in an isomorphic graph.
 - (d) None of the above.
- 88. In any undirected graph, the sum of degrees of all the nodes
 - (a) must be even
 - (b) is twice the number of edges
 - (c) must be odd
 - (d) need not be even
- **89.** $(PVQ) \land (P \rightarrow R) \land (Q \rightarrow S)$ is equivalent to
 - (a) S A R
- (b) $S \rightarrow R$
- (c) S V R
- (d) none of the above

- 90. Which of the following are tautologies?
 - (a) ((PVQ) ∧ Q) ↔ Q

(b) $(P \ V \ (P \rightarrow Q)) \rightarrow P$

(c) ((PVQ) ∧ P) → Q

- (d) $((PVQ) \land {}^{\sim}P) \rightarrow Q$
- **91.** Identify the valid conclusion from the premises $P \lor Q$, $Q \to R$, $P \to M$. "M
 - (a) P Λ (Q V R)
- (b) P ∧ (Q ∧ R)
- (c) $R \land (P \lor Q)$ (d) $Q \land (P \lor R)$
- **92.** T is a graph with 'n' vertices. If T is connected and has exactly n-1 edges, then
 - (a) T is a tree
 - (b) T contains no cycles
 - (c) every pair of vertices in T is connected by exactly one path
 - (d) the addition of a new edge will create a cycle.
- *93. If one has to obtain the roots of $x^2 2x + \log 2 = 0$ to four decimal places, log 2 should be given to the accuracy of approximately
 - (a) 6 × 10⁻⁵
- (b) 7×10^{-6}
- (c) 8×10^{-5} (d) 9×10^{-7}
- *94. Choose the incorrect statement(s).
- (a) The determinant of a matrix equals the sum of its eigen values.
 - (b) A matrix satisfies its characteristic equation.

	(c) The sum of the principal	diagonal elements of	of a matrix equals the	sum of its eigen values.
	(d) If a row of a matrix is s	ame as one of its co	lumns, its determinan	t value is 0.
*95.	M is a square matrix of orde	er 'n' and its determ	inant value is 5. If all	the elements of M are
	multiplied by 2, its determin	ant value becomes 4	40. The value of 'n'	is
	(a) 2 (b)	3 ((c) 4	(d) 5
96.	In a computer an n-digit inte	ger $a_n a_{n-1} \dots a_1$ is	represented as an an-	$_1 \dots a_{r+1} 00 \dots 0$. The
	error e is			
	(a) $0 \le e \le 10^{r-1}$ (b) $1 \le$			(d) $0 \le e \le 10^{r+1} - 1$
97.	$1 - x^2/2! + x^4/4! - \dots + (-1)$	$n^{n} x^{2n}/2n! +$ is the	expansion of	
	(a) e^x (b)	$\log x$ ((c) cos x	(d) sin x
*98.	In the previous question, for		$f(x) < \pi/2$, the numbe	r of terms in the series
	that should be considered is			
	(a) 5 (b)	,		(d) 10
99.	Which of the following met	hods gives the least	error when e^x is integ	grated from 0 to 0.4?
	(a) Trapezoidal rule with th	e interval width as (0.2	
	(b) Trapezoidal rule with th	e interval width as ().1	
	(c) Simpson's 1/3 rule with	the interval width a	s 0.1	
	(d) Simpson's 1/3 rule with	the interval width a	s 0.2	
100	. Which of the following law	vs doesn't hold good	in finite precision flo	pating point arithmetic?
	(a) $a \times b = b \times a$		(b) $(a + b) + c = a + c$	+ (b + c)
	(c) $a \times (b + c) = a \times b + a$	$i \times c$	(d) $a + a = 2 \times a$	
101	 Surplus variables are usual 	ly introduced in an l	LPP model	
	(a) if the demand is less th	nan the available res	ource	
	(b) if the available resource	e is less than the de	mand	
	(c) if the demand is same	as the available reso	urce	
	(d) while solving the dual	of the given primal		
*102	. In an LPP model in its star	ndard form, three of	the constraints are	
	$x_1 + x_2 \le$	2		
	$2x_1 + 2x_2$	≤ 3		
	$3x_1 + 3x_2$. ≤ 8		
	Removal of which of the c	onstraints will not a	ffect the optimality?	
	(a) II and III (b)	I and II	(c) I and III	(d) I only
103	 An LPP having 2 optimal s 	solutions must have		
	(a) more than 3 constraints	s		
	(b) more than 2 optimal so	olutions		
	(c) even number of constra	ainte		

(d) none of the above

sible solution.

with 'm' equations and 'n' unknowns (m < n) can't exceed

	(a)	m_{C_a}	(b) m _P	(c) n _{C∞}	(d)	$n_{P_{a}}$
105.	In a	the solution of an LP	PP using simplex n	nethod, the cu	rrent cost of the	objective function
	mu	st				
	(a)	increase in the next	iteration			
	(b)	can't decrease in the	e next iteration			
	(c)	remain the same in	the next iteration			
	(d)	correspond to one inequations	of the corners of	the convex	region bound by	the constraining
106.	one	he cost of the objects of the corners of the responding to all its	ne convex region b	ound by the c		•
	(a)	it is the optimal solu	ution			
	(b)	simplex method ente	ers a cycle			
	(c)	simplex method mo	ves onto one of the	e adjacent com	ners	
	(d)	simplex method terr	minates			
107.	Rev	vised simplex method	i			
	(a)	is conceptually same	e as the simplex m	ethod		
	(b)	is a version of simple	lex method ideal for	or implementa	tion in computer	
	(c)	is a version of simple	lex method ideal for	or sensitivity a	analysis	
	(d)	uses recursion instea	ad of iteration to se	olve a given L	.PP	
108.	The	dual simplex metho	d starts with a			
	(a)	feasible but super-of	ptimal solution			
	(b)	feasible but sub-opti	imal solution			
	(¢)	infeasible but super-	-optimal solution			
	(d)	infeasible but sub-op	ptimal solution			
109.	Wh	ich of the following	simplex based tech	nniques are ide	eal for sensitivity	analysis?
	(a)	Revised simplex me	ethod	(b) Parai	metric programm	ing
	(c)	Dual simplex metho	od	(d) Big-l	M method	
110.	Cho	oose the correct state	ements.			
	(a)	It is computationally of constraints in the		-		

(b) The cost of the (primal) objective function corresponding to a feasible solution can't be greater than, the cost of the (dual) objective function corresponding to any of its fea-

(c) It is computationally advantageous to solve a given LPP in its dual form, if the number

of variables in the primal form is more than the number of constraints.

104. The number of iterations taken by simplex method for solving an LPP in its standard form,

		pramemanca 1 o	4756464	nons of Conquaer s	CHEPPLE		107
	(d)	The cost of the (primal) objective function be less than the cost of the (dual) objective sible solution.					
111.	Ch	oose the correct statement(s).					
	(a)	Addition of a new constraint to an LPP car	n ne	ver improve the of	otimal	value	
	(b)	Addition of a new variable can never decre	ease	the optimal value			
	(c)	Addition of a new constraint can never dec	reas	e the optimal valu	e		
	(d)	Addition of a new variable can never impr	ove	the optimal value			
112.	Ch	anging the right hand side of the constraints	and	the coefficient of	the co	st func	tion
	(a)	can't destroy the optimality of the solution					
	(b)	can't destroy the feasibility of the solution					
	(c)	can destroy the optimality and feasibility of	f the	solution			
	(d)	none of the above					
113.	Let	A be the set of all non-singular matrices	ove	r real numbers an	d let	be the	e matrix
	mu	ltiplication operator. Then,					
	(a)	A is closed under * but <a, *=""> is not a ser</a,>	ni-gı	roup			
	(b)	<a, *=""> is a semi-group but not a monoid</a,>					
	(c)	<a, *=""> is a monoid but not a group</a,>					
	(d)	<a, *=""> is a group but not an abelian group</a,>	+				
114.	Ne	wton-Raphson method					
	(a)	is not efficient in handling multiple roots					
	(b)	has a slow rate of convergence					
		should not be preferred if there is a point of					
	(d)	should not be preferred if the graph of the vicinity of the root	cur	ve is almost parall	ei to ti	he x-axi	s, in the
115.	In	the bisection method for finding the roots of	f an	equation, the appr	roxima	te relati	ve error
	is a	ilways					
	(a)	greater than the relative error	(b)	equal to the relati	ve em	or	
		less than the relative error		none of the above	₿		
116.		pezoidal rule gives the exact solution when	the	curve is			
		concave towards the base line		convex towards the		e line	
		a straight line		none of the above	e		
117.		a function $y' = f(x)$ has an inverse function,					
	,	symmetric about x-axis	7 1	an odd function			
		symmetric about y-axis	, -	none of the above	è		
118.		what value of c , will the vector $i + cj$ be or					
	(a)	0 (b) 1	(c)	2	(d) 3		

*119. The solution of the differential equation y'' + 3y' + 2y = 0, is of the form

(a) $C_1e^x + C_2e^{2x}$ (b) $C_1e^{-x} + C_2e^{3x}$ (c) $C_1e^{-x} + C_2e^{-2x}$ (d) $C_1e^{-2x} + C_2e^{-x}$

(d) G is of finite order

*120.	If the proposition ~P ⇒	Q is true, then the truth	h val	ue of the prop	ositi	on $P V(P \Rightarrow Q)$, is
	(a) true (b) m	ulti-valued	(c)	false	(d)	cannot be determined
*121.	The number of divisors	of 600 (including 1 ar	id 60	00) is		
	(a) 24	(b) 22	(c)	23	(d)	25
*122.	The determinant value	of the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$	is			
		(5 7 9)			
	(a) 12	(b) 16	(c)	42	(d)	none of the above
*123.	Which of the following	elementary operations	may	affect the ran	ık of	a matrix?
	(a) Scalar multiplicatio	n		,		
	(b) Adding two rows					
	(c) Adding a row with	the scalar multiple of a	noth	ier row		
	(d) None of the above					
124.	Which of the following	will not form an abelia	an gi	roup?		
	(a) Addition over the s	et of natural numbers	(b)	Subtraction of	ver	the set of integers
	(c) Multiplication over	the set of integers	(d)	None of the	abov	e
*125.	A group has 11 element	ts. The number of prop	er su	ıb-groups it ca	an ha	ave is
	(a) 0	(b) 11	(c)	5		(d) 4
*126.	Let A and B be two $n \times$	-				
	(a) $AA^t = I$	(d) $A = A^{-1}$	(c)	AB = BA		$(d) (AB)^t = BA,$
127.	Backward Euler method					
	(a) $y_{n+1} = y_n + hf(x_n, y_n)$			$y_{n+1} = y_n + h y$		
	(c) $y_{n+1} = y_{n-1} + 2hf(x_n)$	T-1	(d)	$y_{n+1} = (1 + h)$	f(x)	y_{n+1}, y_{n+1}
*128.	Let A and B be two arb					
	(a) $P(A \cap B) = P(A) P(A)$			$P(A \cup B) = I$		
	(c) $P(A/B) = P(A \cap B)$	+ P(B)	(d)	$P(A \cup B) \leq I$	$^{o}(A)$	+ P(B)
129.	The rank of the matrix					
	()	0 0 -3 9 3 5 3 1 1 is				
	()	3 1 1)				
	(a) 0	(b) 1	(c)	2		(d) 3
*130.	(G, *) is an abelian gro	up. Then				
	(a) $x = x^{-1}$, for any x be					
	(b) $x = x^2$, for any x be					
	(c) $(x*y)^2 = x^2*y^2$, for a	any x , y belonging to G	7			

131.	In a compact single din the elements above the the lower triangle) of e	diagonal are zero), of	size n	× n, non-zero eler	nents (i.e., elements of
	The index of the (i, j) th				_
	(a) $i + j$	(b) $i + j - 1$			-
*132.	The number of sub-stri				7.7
	length n is				-
	(a) n	(b) n ²	(c)	n(n-1) / 2	(d) $n(n+1) / 2$
133.	In the set of natural nur	nbers, the binary opera	ators t	hat are not associa	tive and not commuta-
	tive are				
		subtraction		-	(d) division
*134.	A relation R is defined		relat	ion R is	
	(a) symmetric but not				
	(b) symmetric and tran				
	(c) not reflexive, not sy		nsitive		
	(d) an equivalence rela				
135.	The number of subsets	of {1, 2,, n} of od	d care	linality is	
	(a) dependent on the v	alue of n	(b)	2^{n-1} , if n is odd	
	(c) 2^{n-1} , if <i>n</i> is even			2^{n-1} , for any val	
*136.	The probability of an otogether is Q. The prob	_			
	of A occurring is	dia n. o. n	(.)	0 . 8	(A) B (A) B
127	(a) $P + Q + R$				
137.	Let A, B, C be independent occurrence of at least of		robab	inties 0.8, 0.5, 0.	3. The probability of
	(a) 0.3	(b) 0.93	(c)	0.12	(d) 0.07
138	The subset of a countal	1 /	(0)	0.12	(0) 0.07
100	(a) has to be countable		(b)	may or may not l	ne countable
	(c) has to be finite			none of the above	
139.	Every element of some	ring (R. +. *) is such			
2231	(a) is commutative			is non-commutati	-
	(c) may or may not be	commutative		none of the abov	
140.	For the M/G/1 queuing		, ,		
	(a) Poisson and Binom	-		Binomial and Po	
	(c) General and Poisso			Poisson and Gen	
141.	Consider the set {1, 2,				
	(Least Common Multip		_		
	does this algebraic stru				
	(a) Group	(b) Ring	(c)	Field	(d) Lattice

(b) ω , ω^2 are the only generators

(d) 0

(d) none of the above

*151. The value of $\lim_{x\to 0} x \log x$ is

(a) $-\infty$ (b) ∞ (c) 1

(a) ω is the only generator
 (c) ω² is the only generator

*152.	The function $f(x)$ is continuous in [0 can conclude that	1], such that $f(0) = -1$, $f(1/2) = 1$ and $f(1) = -1$. We
	(a) f attains the value zero at least tw	rice in [0, 1]
	(b) f attains the value zero exactly or	ice in [0, 1]
	(c) f is non-zero in [0, 1]	
	(d) f attains the value zero exactly tw	rice in [0, 1]
*153.	The sum of the infinite series $\sum kx^k$, v	where $-1 < x < 1$, is
	(a) $x/(1-x)$ (b) $x/(1-x)^2$	(c) $x^2/(1-x)^2$ (d) $1/(1-x)$
*154.	Which of the following is not a linear	r transformation?
	(a) $f: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $f(x, y, z)$:	=(x, z)
	(b) $f: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $f(x, y, z)$:	=(x, y-1, z)
	(c) $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $f(x, y) = 0$	2x, y-x
	(d) $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $f(x, y) = 0$	y, x)
*155.	If the determinant of an $n \times n$ matrix	A is zero, then
	(a) rank of A is n	
	(b) rank of $A \le n-2$	
	(c) A has at least one zero eigen valu	ie .
	(d) the system of equations $Ax = 0$ has	as no solution other than the trivial solution
156.	A is a 2×2 matrix with eigen values	2 and −3. The eigen values of the matrix A ²
	(a) are 4 and -9	(b) are 2 and −3
	(c) are 4 and 9	(d) cannot be determined from the given data
157.	Among any $n + 1$ distinct positive int	egers less than or equal to $2n$, we can always find
	(a) n numbers that are relatively print	ne to 2n
	(b) two numbers that are relatively pr	rime to each other
	(c) two prime numbers	
	(d) none of the above	·
158.	Let X_1 and X_2 be any two unit vector	s in \mathbb{R}^3 . The angle between the two planes $X_1 \cdot X = c$
	and $X_2 \cdot X = 2c$, where c is a constant	
		(c) $X_1 \cdot X_2$ (d) none of the above
159.	If $(x_1, x_2, x_3) \times (1, 3, 1) = (2, 1, 6), v$	where x denotes the vector product, then (x_1, x_2, x_3) is
	given by	
	(a) (0, 1, 1)	(b) (m, 0, 1 − m) for all real m
	(c) (-1, 2, -7)	(d) there does not exist any such (x_1, x_2, x_3) in \mathbb{R}^3
160,	Which of the following is a cube root	t of the complex number -27i?
	(a) $-3i$ (b) $-3/2(\sqrt{3} + i)$	(c) $-3/2(\sqrt{3}-i)$ (d) $3(\sqrt{3}-1)$
161.		o. What will be the binary equivalent of 222 in this
	(a) 101010 (b) 11000	(c) 10110 (d) 11010

(a) XOR and 00001111

then the correct mask and the operation should be

	(c) AND and	00001117	1		(d)	OR -	and .	1111	0000		
163.	Which of the operation?	following lo	ogical o	peration "	almost	reser	mbles	an ar	ithmetic	multipli	ication
	(a) OR	(b)	AND		(c)	NOR			(d) X	DR	
164.	To change low	er case to up	per case	e letters i	in ASCI	I, the	corre	ct mas	k and o	peration	should
	be (ASCII value	ue of charact	er A is	65 and c	haracter	a is	97)				
	(a) 0100000	and NOR			(b)	010	0000	and	OR.		
	(c) 0100000	and NANI	D		(d)	101	1111	and	AND		
*165.	Consider the n	ested for lo	oop								
	for I1 =	1 to N									
	for I2 =	1 to I1									
	for I3 =	= 1 to I2	2								
		for Ik	= 1	to I(k	-1)						
		PRI	NT T1	T2	I3,	,	Ik				
				1							
	How many tim	nes is the PR	INT sta	tement ex							
	How many time (a) k^N	nes is the PR		tement ex	xecuted? (c)		1) C _k		(d) (k-	N-1) Ck	
	(a) k^N	nes is the PR	INT star	tement ex C_k	(c)	(k = N +	_				
	(a) k^N	three ques	INT star in the N-1 itions a teger le	tement ex	(c) d on th	^{(k-N+} ie fol	llowin	g ass	umptio	ns.	aliest
integ	(a) k ^N The next f(x) represent the greater than	three ques the largest into or equal to x	INT star (4+N-1) stions a teger le	tement expenses C_k are based as than C_k	(c) d on the	to x.	Let g	g ass	umptio	ns.	aliest
integ	(a) k ^N The next f(x) represent the greater than Which of the f	three ques the largest into a country to a	INT star (4+N-1) stions a teger le	tement expenses C_k are based as than C_k	(c) d on the prequal	to x.	Let g	g ass	umptio	ns.	allest
integ	(a) k^N The next $f(x)$ represent the greater than Which of the f (a) $g(x) = f(x)$	three ques the largest into a cqual to a following rem the largest into the cqual to a following rem the largest int	INT star (4+N-1) stions a teger le	tement expenses C_k are based as than C_k	(c) d on the or equal rue for a (b)	to x . any x ?	Let g	g ass	umptio	ns.	aliest
166.	(a) k^N The next $f(x)$ represent the greater than Which of the f (a) $g(x) = f(x)$ (c) $f(-x) = -g(x)$	three ques the largest into a cqual to x following rem + 1 (x)	INT star (4+N-1) stions a teger le	tement expenses than α will be tr	(c) d on the er equal rue for a (b) (d)	to x : any x ? all of	Let g $= g(x)$ If the a	g (x) r	represent	ns.	
166.	(a) k^N The next $f(x)$ represent the greater than Which of the f (a) $g(x) = f(x)$ (c) $f(-x) = -g$ Which of the f	three ques the largest into a cqual to x following ren + 1 (x) following, list	INT star (4+N-1) stions a teger le	tement expenses than α will be tr	(c) d on the or equal rue for a (b) (d) -1 and	to x . any x ? $f(x) = $ all of $x+1$ is	Let g $= g(x)$ If the a	g (x) r	represent	ns.	
166.	(a) k^N The next F(x) represent the generater than Which of the f (a) $g(x) = f(x)$ (b) $f(-x) = -g(x)$ Which of the f (c) $f(-x) = -g(x)$	three ques the largest into or equal to x following rem $x + 1$ $x + 1$ following, list $x + 1$ $x + 1$	INT star (4+N-1) stions a teger le	tement expenses than α will be tr	(c) d on the or equal rue for a (b) (d) -1 and (b)	to x . any x ? $f(x) = $ all of $x + 1$ is $x - 1$,	Let g $= g(x)$ $f \text{ the a non } x, f(x)$	bove $g(x)$ $g(x)$	reasing s	ns.	
166.	(a) k^N The next $f(x)$ represent the greater than Which of the f (a) $g(x) = f(x)$ (b) $f(-x) = -g(x)$ Which of the f (c) $f(-x) = -g(x)$ Which of the f (d) $f(-x) = -g(x)$ Which of the f (e) $f(-x) = -g(x)$	three ques the largest into or equal to x following rem $x + 1$ $x + 1$ following, list $x + 1$ $x + 1$	INT star (4+N-1) stions a teger le	tement expenses than α will be tr	(c) d on the or equal rue for a (b) (d) -1 and (b)	to x . any x ? $f(x) = $ all of $x + 1$ is $x - 1$,	Let g $= g(x)$ $f \text{ the a non } x, f(x)$	g (x) r	reasing s	ns.	
166.	(a) k^N The next If $f(x)$ represent the generater than Which of the final $g(x) = f(x)$ (b) $f(-x) = -g(x)$ Which of the final $g(x) = f(x)$ Which of the final $g(x) = f(x)$ The next $f(x) = f(x)$ The next $f(x) = f(x)$	three ques the largest into or equal to x following rem $x + 1$ $f(x)$ following, list $f(x)$, $f(x)$, $x+1$ $f(x)$, $f(x)$, $f(x)$, $f(x)$, $f(x)$	INT star ($x + N - 1$) stions a teger lead teger	tement expenses than a will be true $g(x)$, x , x	(c) d on the or equal one for a (b) (d) (-1 and (b) (d)	to x. any x? f(x) = all of x+1 is x-1, x	Let g $= g(x)$ $f \text{ the a non } x, f(x)$ $x, g(x)$	bove on-decide, $x+1$,	reasing $x+1$	ns.	
166. 167.	(a) k^N The next f(x) represent the greater than Which of the f (a) $g(x) = f(x)$ (b) $f(-x) = -g(x)$ Which of the f (a) $x-1, x, g(x)$ (b) $x-1, f(x), x$ $x \mod y$ is (a) $x - yf(x)$	three questing the largest into or equal to x following removed the following, list (x) , $f(x)$, $x+1$, x , $g(x)$, $x+1$	INT star (x+N-1) stions a teger lead teger lead (x+N-1) teger lead (x+N-1)	tement expenses than a will be true $g(x)$, x , x	(c) d on the or equal rue for a (b) (d) (-1 and (b) (d)	to x . any x ? $f(x) = $ all of $x+1$ is $x-1$, $x-1$, $x-1$	Let g $f \text{ the a n a no } x, f(x)$ $f(y)$	bove on-dector, $g(x)$, $g(x)$	reasing x , $x+1$ $f(x)$	sequence	
166. 167.	(a) k^N The next $f(x)$ represent the greater than Which of the f (a) $g(x) = f(x)$ (b) $f(-x) = -g(x)$ Which of the f (c) $f(-x) = -g(x)$ Which of the f (d) $x-1, x, g(x)$ (e) $x-1, f(x), x$ $x \mod y$ is (a) $x - yf(x)$ For $n > 2$, the	three ques the largest into requal to x following rem $x + 1$	INT star (x+N-1) stions a teger lead teger lead (x+N-1) teger lead (x+N-1)	tement expenses than a will be true $g(x)$, x , x	(c) d on the or equal rue for a (b) (d) (-1 and (b) (d) (c) x o solution	to x . any x ? $f(x) =$ all of $x+1$ in $x-1$, $x-1$	Let g $= g(x)$ $f \text{ the a n a no } x, f(x)$ $x, g(x)$ $f(y)$ $g(y)$ $g(y)$	bove on-decident, $g(x)$ in the second of t	reasing x , $x+1$ $f(x)$ (d) x -egers. The	sequence xf(x/y) nis is	
166. 167.	(a) k^N The next f(x) represent the greater than Which of the f (a) $g(x) = f(x)$ (c) $f(-x) = -g$ Which of the f (a) $x-1$, x , $g(x)$ (c) $x-1$, $f(x)$, x $x \mod y$ is (a) $x - yf(x)$ For $n > 2$, the (a) Fermat's later than $x = x$	three ques the largest into a cqual to x following rem $x + 1$ $x + $	INT star (x+N-1) stions a teger lead teger lead (x+N-1) teger lead (x+N-1)	tement expenses than a will be true $g(x)$, x , x	(c) d on the or equal rue for a (b) (d) (-1 and (b) (d) (c) x- o solution (b)	to x . any x ? $f(x) =$ all of $x+1$ is $x-1$, $x-1$, x on in y Rama	Let g $= g(x)$ $f \text{ the a n on } x, f(x)$ $x, g(x)$ $f(x)$ $x = f(x)$ $x $	bove on-decident, $g(x)$ in the following $g(x)$ in t	reasing : , x+1 f(x) (d) x - egers. Transmitted to	sequence xf(x/y) nis is	
166. 167. 168.	(a) k^N The next f(x) represent the greater than Which of the f (a) $g(x) = f(x)$ (b) $f(-x) = -g(x)$ Which of the f (a) $x-1, x, g(x)$ (b) $x-1, f(x), x$ The next Which of the f (a) $x-1, x, y(x)$ (b) $x-1, x \in \mathbb{R}$ (c) $x-1, x \in \mathbb{R}$ (d) $x-1, x \in \mathbb{R}$ (e) $x-1, x \in \mathbb{R}$ (f) $x-1, x \in \mathbb{R}$ (g) $x-1, x \in \mathbb{R}$ (h) $x-1, x \in \mathbb{R}$	three questing the largest into or equal to x following removed the following, list (x) , $f(x)$, $x+1$, (x) , $f(x)$, $x+1$, (x) , $f(x)$, $f(x$	INT star ($a + N - 1$) stions a teger lead teger lead ($a + x + y + y + y + y + y + y + y + y + y$	tement experience C_k are based as than a will be tr $g(x), x, x$ z^n , has no	(c) d on the or equal rue for a (b) (d) (-1 and (b) (d) (c) x o solution (b) (d)	to x . any x ? $f(x) = $ all of $x+1$ is $x-1$, $x-1$, $x-1$, $x-1$. Rama Ferm	Let g $= g(x)$ $f \text{ the a n a no } x, f(x)$ $x, g(x)$ $f(x)$ $x = f(x)$	bove on-decident, $g(x)$ in the interior $g(x)$, $g(x$	reasing s , x+1 f(x) (d) x - egers. The	sequence xf(x/y) nis is	
166. 167. 168.	(a) k^N The next If $f(x)$ represent the greater than Which of the f (a) $g(x) = f(x)$ (b) $f(-x) = -g(x)$ Which of the f (c) $f(-x) = -g(x)$ Which of the f (d) $f(-x) = -g(x)$ Which of the f (e) $f(-x) = -g(x)$ The next is a first second of the fellow that is a first second of the fellow th	three ques the largest into or equal to x following rem $x = x$ following, list $x = x$ $x = x$ $x = x$ equation x ast theorem last theorem ollowing value	INT star (x+N-1) stions a teger lead teger lead (x+N-1) teger lead (x+N-1) (x+N-1) teger lead (x+N-1) (x+N-1) teger lead (x+N-1) (x+N-1) teger lead (x+N-1) (x+N-	tement experience C_k are based as than a will be tr $g(x), x, x$ z^n , has no	(c) d on the or equal rue for a (b) (d) (-1 and (b) (d) (c) x o solution (b) (d) x, satisfie	to x . any x ? $f(x) =$ all of $x+1$ is $x-1$, $x-1$, x Property Rama Fermi es the	Let g P E $g(x)$ If the an $g(x)$ E $g(x)$ If	bove on-decident (x, y) in the interior (x^2)	reasing so $x+1$ $f(x)$ (d) $x-1$ egers. The nenical to orem $x^2 + y^2 = x^2$	sequence xf(x/y) is is theorem z²?	
166. 167. 168.	(a) k^N The next f(x) represent the greater than Which of the f (a) $g(x) = f(x)$ (b) $f(-x) = -g(x)$ Which of the f (a) $x-1, x, g(x)$ (b) $x-1, f(x), x$ The next Which of the f (a) $x-1, x, y(x)$ (b) $x-1, x \in \mathbb{R}$ (c) $x-1, x \in \mathbb{R}$ (d) $x-1, x \in \mathbb{R}$ (e) $x-1, x \in \mathbb{R}$ (f) $x-1, x \in \mathbb{R}$ (g) $x-1, x \in \mathbb{R}$ (h) $x-1, x \in \mathbb{R}$	three questing the largest into or equal to x following removed the following, list (x) , $f(x)$, $x+1$, (x) , $f(x)$, $x+1$, (x) equation x^n ast theorem last theorem ollowing value $= 407$, $z = 8$	INT star (x+N-1) stions a teger lead teger lead (x+N-1) teger lead (x+N-1) (x+N-1) teger lead (x+N-1) (x+N-1) teger lead (x+N-1) (x+N-1) teger lead (x+N-1) (x+N-	tement experience C_k are based as than a will be tr $g(x), x, x$ z^n , has no	(c) d on the or equal rue for a (b) (d) (-1 and (b) (d) (c) x o solution (b) (d) x, satisfie (b)	to x . any x ? $f(x) = $ all of $x+1$ is $x-1$, x on in y Rama Fermi es the $x = 7$	Let g $g = g(x)$ If the an $g(x)$	bove on-decident (x, y) in the interior (x^2)	reasing so $x+1$ f(x) (d) $x-1$ egers. The menical to orem $x^2 + y^2 = 1$	sequence xf(x/y) is is theorem z²?	

162. If you want to retain the first 4 bits of given string of 8 bits and complement the last 4 bits

(b) XOR and 11110000

*171.	Which of the following values of x , y , and z , s	atis	fies the equation $x^2 + y^2 = z^2$?
	(a) x=122, y=406, z=887	(b)	x=778, y=334, z=101
	(c) x=8, y=47, z=58	(d)	None of the above
*172.	According to the principle of logic, an implicat	ion	and its contrapositive must be
	(a) both true or both false	(b)	both true
	(c) both false	(d)	none of the above
173.	If an implication and its converse are both true	the	en they can be combined using
	(a) if and only if (b) as long as	(c)	ifthenelse (d) such that
*174.	Associate a code with each letter of the alpha	ibet	such that the code of an alphabet is its
	position in the alphabet set. For example, cod		
	about the word that is made up of alphabets w		
	(a) It must have at least two B's		It must have at least two Y's
	(c) It must have at least two Z's		It must have at least two Q's
*175.	Associate a code with each letter of the alphabe		
	in the alphabet set. For example, code of c is 3, the letters whose product of the codes is 12495	-	25 etc., Find the word that is made up of
	(a) Impossible to find		No such word exists
	(c) The word is DELHI	, ,	None of the above
*176	Associate a code with each letter of the alphabe		
1/04	in the alphabet set. For example, code of c is 3,		*
	the letters whose product of the codes is 3135.		
	(a) The word is CHESS	(b)	No such word exists
	(c) More than one such word exist	(d)	None of the above
*177.	Associate a code with each letter of the alphabe	et su	ch that the code of a letter is its position
	in the alphabet set. For example, code of c is 3,		25, etc. Find the word that is made up of
	the letters whose product of the codes is 1265.		
	(a) The word is WASP		No such word exists
	(c) More than one such word exist		None of the above
*178.	What is the largest 10-digit integer, containing	g all	the numerals 1,2,3,4,5,6,7,8,9,0, that is
	divisible by 4?		00000
	(a) 9876543210		987654204
	(c) 9876543120	1 -	None of the above
*179.	What is the largest 10-digit integer, containing	g all	the numerals $1,2,3,4,5,6,7,8,9,0$, that is
	divisible by 8?	(h)	087654204
	(a) 9876543210 (c) 9876543120		987654204 None of the above
*190			
100.	What is the smallest 10-digit positive integer, co that is divisible by 8?	outa	ming an the numerats 1,2,3,4,3,0,7,8,9,0,
	(a) 1023456789	(b)	01234567968
	(c) 1023457986		None of the above

gets into the correct envelope?

(b) 1/5

(c) 1/60 (d) 1/120

(a) 1/2

*181.	What is the largest 10- divisible by 11?	digit integer, containing	g all the numerals 1,2	,3,4,5,6,7,8,9,0, that is
	(a) 9876543210	(b) 987654204	(c) 9876524130	(d) 9876543120
182.	Manoj had 4 pairs of i With his eyes closed, h before he has a matchin	ne took them out one bing pair? (Assume that w	y one. How many soo hat is taken out is not	cks should he take out put back.)
	(a) 3	(b) 5	(c) 6	(d) 10
183.	Ramu had 2 pairs of it identical green socks, a took them out one by of have a pair of red socks	nd 5 pairs of identical and 5 pairs of identical and ne. How many socks si	red socks in a box. W hould he take out before	ith his eyes closed, he ore he is guaranteed to
	(a) 5	(b) 6	(c) 15	(d) 20
184.	.Manoj had 4 pairs of bl he took them out one by pair? (Assume that what	y one. How many shoes	should he take out be	
	(a) 5	(b) 6	(c) 10	(d) 14
*185.	Gopal was given an ap minimum number of cu			o a cube. What is the
	(a) 4	(b) 6	(c) 8	(d) 12
*186.	Sankar asked Saleem to piece can be moved unto			
	(a) 5	(b) 6	(c) 7	(d) 8
*187.	Akbar asked Amar to co can be moved until the	• • •		
	(a) 8	(b) 9	(c) 10	(d) 11
*188.	A can is filled with 5 per filled with 25 paise coin not having the 10 paise	ns. All the cans are give coins, what will the ca	n wrong labels. If the on, labeled 10 paise ha	can labeled 25 paise is ve?
	(a) 25 paise	(b) 5 paise ((c) 10 paise (d)	Cannot be determined
*189.	A can is filled with 5 pa filled with 5 and 10 pai the can that has the 10 can, of your choice. Wh	se coins. All the cans a paise coins in it. You nich can must you choo	re given wrong labels are allowed to inspect	. You need to identify
	(a) The can that is fille			
	(b) The can that is fille	-		
	(c) The can that is fille	•	coms.	
****	(d) Cannot be determin		21.00	
*190.	Sami wrote 5 different randomly distributed the	- 4	-	

*191.	191. Priya takes 6 minutes to walk to her school from her house. Bianca who lives in the same house can walk to the same school 8 times in an hour. Who walks faster?							
	(a) Priya	mar benevil a rittle on	(b) Bianca					
	(c) Cannot be determine	ed from the facts giver		e				
*192	Vinod took a certain nu							
172.	4, 5, 6, 7, 8, and 9. In how many tests did he	all the other tests, he s						
	(a) 40		60	(d) None of these				
*193.	AB and XY are 2 two-	, ,						
2701	9. How should the assignment							
	(a) A=9, B=5, X=8, an	_	(b) A=9, B=8, X=5,					
	(c) A=9, B=5, X=6, an	nd Y=8	(d) None of these					
*194.	10 machines can cut 100	papers in 10 minutes.	How many minutes do	es it take 20 machines				
	to cut 200 papers?		•					
	(a) 10	(b) 20	(c) 30	(d) 40				
*195.	10 machines can cut 100	papers in 10 minutes.	How many papers wil	l be cut by 5 machines				
	in 1 hour?	(h.) 200	(-) 100	(4) 600				
*100	(a) 200	(b) 300	(c) 400	(d) 500				
*196.	Siva, Varma, and Patil r and Patil by 30 meters.			-				
	head start of 10 meters.			a varina grving radira				
	(a) Siva	(b) Va	6					
	(c) Patil		nnot be determined fro	om the given facts.				
*197.	A six-digit number 123	, ,		-				
	numbers are there?	,						
	(a) 2	(b) 3	(c) 4	(d) 5				
*198.	A train traveling at 60	km/h takes 3 seconds	to enter a tunnel. Th	e same train takes 30				
	seconds to completely	come out of the tunnel.	What is the length of	the tunnel in meters?				
	(a) 400	(b) 500	(c) 600	(d) None of these				
*199.	Here are the statements	of 4 boys.						
	Mani: Subbu ate it							
	Subbu: Joshi ate it							
	Kumar : I didn't eat it							
	Joshi : I didn't eat it							
	Only one of them is tel							
	(a) Mani	(b) Subbu	(c) Kumar	(d) Joshi				
*200.	AB and BA are 2 two-d C is not 0)	ligit numbers such that	AB + BA = CAC. Who	at is A+B+C? (Assume				

(c) 15

(b) 14

(d) None of these

(a) 13

*201.	two cans to get exactly		ne 5 liter can. Is it				
	(a) Yes			(b) No			
	(c) No. But, possible i			(d) None of these			
*202.	distance of two-fifth fr tunnel, Raman ran tow	rom one end, when the ards one end of the tu a speed of 15 mi/hr.	ey heard the soun nnel and Gopal ra	are inside the tunnel at a d of a train approaching the n towards the other immedi- just managed to escape. The			
	(a) 75	(b) 8	3				
	(c) 84	(d) c	annot be determine	ed from the given facts.			
*203.	There are 3 bulbs insid	le a room. There are 3	switches outside	the room. You can enter the			
	room only once. Is it p	ossible to find which	switch controls wh	hich bulb?			
	(a) Yes						
	(b) No						
	(c) No, but possible if	allowed to go into th	e room more than	once			
	(d) None of these						
*204.	Two people at the two ends of a road tunnel of length 150 km start at two bikes facing each other at 25 km/hr and 50 km/hr respectively. At the same moment, a bird starts flying from one end at 100 km/hr towards the other end until it meets the other person. Once it meets, it reverses direction, and starts flying towards the other person. The bird continues this pattern until the bikes collide head _{ii} on. What is the total distance traveled by the bird in kilometers?						
	(a) 100	(b) 200	(c) 300	(d) 400			
*205.	What is the minimum r 8 kg?	number of standard we	ights that can mea	sure any of 1, 2, 3, 4, 5, 6, 7,			
	(a) 2	(b) 3	(c) 4	(d) 5			
*206.	inside the larger one soutside the inner squa minimum number of s	such that the centers are, but inside the or quare-shaped metal sh Assume the metal she	coincide and the iter square is fille neets that are need	The smaller square is placed sides are parallel. The area ed with water. What is the ed to reach the inner square together and the side of the			
	(a) 7	(b) 8					
	(c) 9	(d) 10					
207.	How many squares do	you see in this picture	e?				
	(a) 12						
	(b) 13						
	(c) 1			Fig. 4.2			
	(d) 20			Fig. 4.2			

*208. A rice seller has a balance to measure any quantity of rice that could weigh between 1-40 kg as a whole number. The minimum number of standard weights needed is

(a) 4 (b) 5 (c) 6 (d) 7

*209.	The probability that it will rain today is 0.5. The probability that it will rain tomorrow is 0.6. The probability that it will rain either today or tomorrow is 0.7. What is the probability that it will rain today and tomorrow?							
	(a) 0.3	(b) 0.25				(c)	0.35	(d) 0.4
210.	The determinant of the	1 1		ix is				, ,
			(6	_8		1)		
			0	2	4	6		
			0	õ	4	8		
			0	0	ò	-1/		
	(a) 11	(b) -48	("	_	_	(c)	0	(d) -24
211								
211.	Let $A = (a_{ij})$ be a n-row first and the second row							
	(a) row is same as the	second ro	w.					
	(b) row is same as the	second ro	w of	A.				
4	(c) column is the same	as the se	cond (colu	mn -	of A		
	(d) row is all zero.							
*212.	What is the maximum	value of th	he fun	ctio	n f(x) =	$2x^2 - 2x + 6$ in the	ne interval [0, 2]?
	(a) 6	(b) 10			- , ((c)		(d) 5.5
		. ,				(0)	12	(0) 5.5
*213.	Given $\sqrt{224}_{r} = 13_{r}$	the value	of rac	dix 1	is			
	(a) 10	(b) 8				(c)	5	(d) 6
*214.	The number of equivale	ence relati	ions o	f the	e set	{1,:	2,3,4) is	
	(a) 15	(b) 16				(c)	24	(d) 4
215.	Which of the following	propositi	ons is	ata	uto	logy	?	
	(a) $(p \lor q) \rightarrow p$	(b) p v	(q →	p)		(c)	$p \lor (p \rightarrow q)$	(d) $p \rightarrow (p \rightarrow q)$
216.	Let R be a reflexive an	d transitiv	e rela	ation	def	ined	on a set D. A ne	w relation E is defined
	on set D such that							
	I	$\Xi = \{ (a,b) \}$) I (a,	b) ∈	Ra	and ($(b,a) \in \mathbb{R}$	
	The relation E is							
	(a) a partial order					(b)	a total order	
	(c) an equivalence rela	tion				(d)	none of the above	/e
217.	Let R be a reflexive an	d transitiv	e rela	ition	deí	ined	on a set D. A ne	w relation E is defined
	on set D such that							
							(b,a) ∈ R }	
	A relation ≤ is defined							$\leq E_2$ if there exists a,b
	such that $a \in E_1$, $b \in E_2$ a	nd (a,b)∈	R. Th	is re	lati			
	(a) a partial order						a total order	
	(c) an equivalence rela						none of the above	
218.	A, B are two 8-bit num	bers such	that A	4+B	≤ 2	s. Th	ne number of poss	ible combinations of A
	and B is						-16	
	(a) 2 ⁹	(b) 2 ⁸				(c)	216	(d) $2^4 - 1$

-					
- 6	-		•	•	-
-	ш			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	rs
		-			

1.	c	2.	d	3.	b	4.	a	5.	c
6.	d	7.	a	8.	b	9.	c	10.	a
11.	a, b	12.	d	13.	c	14.	d	15.	c
16.	c	17.	d	18.	ь	19.	d	20.	c
21.	d	22.	a	23.	d	24.	c	25.	a
26.	d	27.	ь	28.	d	29.	c	30.	a
31.	a	32.	b	33.	c	34.	d	35.	a
36.	c	37.	c	38.	b	39.	a, b, c	40.	c
41.	a	42.	c	43.	d	44.	а	45.	d
46.	b	47.	c	48.	c	49.	c	50.	c
51.	a	52.	d	53.	a	54.	a	55.	a
56.	c	57.	a	58.	c	59.	a	60.	a, b
61.	a	62.	b	63.	c .	64.	a	65.	b .
66.	c	67.	a	68.	c	69.	b	70.	a
71.	d	72.	a	73.	c	74.	d	75.	c
76.	c	77.	a, b, đ	78.	a, d	79.	a, b, d	80.	d
81.	d	82.	b, c	83.	c	84.	c	85.	a, b, c
86.	a, b, c	87.	a	88.	a, b	89.	c	90.	a, d
91.	c, d	92.	a, b, c, d	93.	c	94.	a, d	95.	b
96.	a	97.	c	98.	b	99.	c	100.	b, c, d
101.	b, d	102.	c	103.	b	104.	c	105.	b, d
106.	a, d	107.	a, b	108.	c	109.	b, c	110.	a, b
111.	a, b	112.	c	113.	d	114.	a, b, c, d	115.	a
116.	c	117.	c	118.	c	119.	c	120.	d
121.	a	122.		123.		124.	a, b, c	125.	a
126.		127.		128.		129.	c	130.	c
131.	c	132.		133.		134.	a	135.	
136.		137.	b	138.		139.	a	140.	d
141.	d	142.		143.	d	144.	ь	145.	b
146.	a	147.	c	148.		149.	c	150.	b
151.		152.		153.		154.		155.	c
156.		157.		158.		159.		160.	
161.		162.		163.		164.		165.	
166.		167.		168.		169.		170.	
171.		172.		173.		174.		175.	
176.	c	177.	c	178.	¢	179.	c	180.	d

1...

181. c	182. a	183. d	184. c	185. b
186. c	187. d	188. a	189. c	190. d
191. a	192. d	193. a	194. a	195. b
196. b	197. b	198. d	199. c	200. d
201. a	202. a	203. a	204. b	205. ь
206. b	207. d	208. a	209. d	210. ь
211. с	212. b	213. с	214. a	215. с
216. c	217. a	218 a		

Explanations

- 1. $^{39}P_{30} / ^{40}P_{30} = 1/4$
- 2. Probability that the unit digit is not 7 is 9/10.

Probability that the tens digit is not 7 is 9/10.

Probability that the hundreds digit is not 7 is 8/9.

So, the probability that all the three digits are not 7 is (9/10) (9/10) (8/9) = 18/25.

3. Let x = 0.15252525...

$$1000 x - 10 x = 151$$
. So, $x = 151/990$

 The required value is, number of arrangement without restriction – number of arrangement with restriction. That is

$$(8-1)! - (7-1)! \ 2! = 6! \ (7-2) = 3600$$

- The converse is also true.
- **6.** Total cases is $6 \times 6 \times 6 = 216$

For real roots $b^2 \ge 4$ ac

When $b^2 = 36$, ac can't be 10, 11, 12...

When ac is 1, b can take the 5 values 2, 3, 4, 5, 6.

When ac is 2, either a = 1, b = 2 or a = 2, b = 1. When ac = 2, b can take the 4 values 3, 4, 5, 6. So, total 4 + 4 = 8 possible values. Continuing this way, we find there are 43 possible cases. Hence the required probability is 43/216.

7. Including 0 occupying the most significant position, the sum will be

$$24 (2 + 4 + 6 + 8) (10000 + 1000 + 100 + 10 + 1) = 24 \times 20 \times 11111$$

Out of these, 0 occupies the most significant place in 4! numbers. Sum of these will be $(4!/4)(2+4+6+8)(1000+100+10+1)=6\times20\times1111$...II

I – II gives the result.

- 8. It is ${}^{6}C_{2} \times {}^{4}C_{2} / 2 = 45$
- 9. O(h) is 2, implies hh = e (e is the identity element of the group).

Now,
$$(ghg^{-1})(ghg^{-1}) = gh(g^{-1}g)hg^{-1} = g(hh)g^{-1} = gg^{-1} = e$$
.

So, O(ghg⁻¹) is 2.

13. $\log \sin (x) > 0 \Rightarrow \sin x > e^0 = 1$, which is impossible.

- 14. Only when λ, = 4 and μ = 2, we have 2 equations in three variables, giving infinitely many solutions.
- 15. Let aRb. Since the relation is symmetric, bRa. Since transitivity holds good, aRb and bRa imply bRb and aRa. If R has to be an equivalent relation, it has to be reflexive, ie., for any x belonging to A, xRx should be valid. Hence R need not be reflexive. So it need not be an equivalent relation. For example, let A = {1, 2, 3}. Let R = {(1, 2), (2, 1), (1, 1), (2, 2)}. R is both symmetric and transitive but not reflexive as (3, 3) is missing.
- 16. The set has 3 elements. So the power set has $2^3 = 8$ elements.
- 17. It is 9.
- **18.** It is $\sqrt{18^2 + 6^2 + (4.5)^2}$
- 19. Out of the 8 available squares, 6 can be selected in ${}^{8}C_{6} = 28$ ways. This includes the two possibilities which are not allowed. These two possibilities are—One with top row empty and the other with the bottom row empty. So, there are 28 2 = 26 possibilities.
- **20.** The required number is 100 (10 + 20 + 15 + 10 + 12 + 5 + 8) = 20.
- 26. Solving the three equations we get n = 9 and r = 3.
- 27. Consider the function f(x) = x cos (x). f(0) is 0 1 = -1, a negative number. f(π) is π (-1) = π + 1, a positive number. So, the function will have an odd number of roots (Ref Qn. 54) in the interval [0, π]. Also, it cannot have infinitely many roots as cos (x) oscillates in [-1, 1], while (y =) x increases monotonically and so infinite solution is impossible. Hence the answer is option b.
- **28.** It is $10^5 {}^{10}P_5$
- **29.** ${}^{n}C_{r} + {}^{n}C_{r} = {}^{(n+1)}C_{r}$ So, ${}^{47}C_{4} + {}^{47}C_{3} = {}^{48}C_{4}$, etc., Using this, the given summation can be simplified to ${}^{52}C_{4}$
- 30. The rank of a matrix is said to be N, if the determinant value of at least 1 sub-matrix of order N × N is not 0 and all (N + 1) × (N + 1) is zero. So the rank of the given matrix is 1, as any sub-matrix of order 2 × 2 has 0 determinant value and (1), a sub-matrix of order 1 × 1 has the non-zero determinant value of 1.
- 32. The number of elements in the power set of a set with n elements is 2^n . The given set A has n elements. So, $A \times A$ will have n^2 elements. So, its power set will have 2^{n^2} elements.
- **33.** It is 1 (0.6)(0.6)(0.6) = 0.784.
- 34. Let f(x) = x + 1/x. $f'(x) = 1 - 1/x^2$ $f'(x) = 0 \Rightarrow x = \pm 1$ $f''(x) = 2/x^3 > 0$, for x > 0. So, x = 1. f'(1) = 2
- **35.** f''(0) = 0, as f is continuous at x = 0.

$$\lim_{h\to 0} f(x+h) = \lim_{h\to 0} f(x) + f(h) \Rightarrow \lim_{h\to 0} f(x) + \lim_{h\to 0} f(h) = f(x)$$

So, f is continuous for all x.

36.
$$f'(5) = \lim_{h \to 0} \frac{f(5+h) - f(5)}{h} = f(5) \lim_{h \to 0} \frac{f(h) - f(0)}{h} = f(5) f'(0) = 6$$

38. Distinct elements of
$$\bigcup_{i=1}^{30} A_i = 30 \times 5/10 = 15$$

Distinct elements of
$$\bigcup_{j=1}^{N} B_j = (n \times 3)/9 = n/3$$

So,
$$n/3 = 15$$
 or $n = 45$

- **40.** Given that 1, ω , ω^2 are the roots of $x^3 1 = 0$. So, $1 + \omega + \omega^2 = 0$; $1 \times \omega \times \omega^2 = \omega^3 = 1$. The given equation being a third degree equation has 3 roots. Let it be a, b, c. We have a + b + c = -(-3) and ab + bc + ac = 3 and abc = -7. Only option c satisfies all these. Verify.
- **41.** Consider the function $\phi(x) = f(x) 2g(x)$

 $\phi(0) = \phi(1) = 2$. So, $\phi(x)$ satisfies the conditions of Roll's theorem in [0, 1]. So, $\phi'(x) = f'(x) - 2g'(x)$ has at least one 0 at C in (0, 1)

i.e.,
$$\phi'(C)=0 \Rightarrow f'(C)=2g'(C)$$

- **42.** The only possibility is $f(z) \neq 2$ is true and the other two are false. So, $f^{-1}(1) = y$
- **43.** h'(x) = 2f(x) f'(x) + 2g(x) g'(x).

So,
$$h'(x) = 2f(x)g(x) + 2g(x)(-f(x)) = 0 \Rightarrow h(x)$$
 is constant. So, $h(5) = 11$

45. Let $x = i^i$ Taking log on both sides, we get $\log x = i \log (i)$.

$$e^{i\theta} = \cos(\theta) + i \sin(\theta)$$
. Putting $\theta = \pi/2$, we get $e^{i\pi/2} = i$.

So,
$$\log x = i \log (e^{i\pi/2}) = i \times i\pi/2$$
, $\log (x) = -\pi/2$.

Hence
$$x = e^{-\pi/2}$$
 — a real number

47. The given decimal number can be written as

$$(1+2) \times 2^{12} + (1+2+4+8) \times 2^8 + (1+4) \times 2^4 + (1+2)$$

= $2^{13} + 2^{12} + 2^{11} + 2^{10} + 2^9 + 2^8 + 2^6 + 2^4 + 2^1 + 2^0$. This has 10 one's.

49. We can arrange 1 or 2 or 3 or ... r things at a time.

Number of ways of arranging 1 at a time is n

Number of ways of arranging 2 at a time is n^2

Number of ways of arranging 3 at a time is n^3 etc.,

So, total number of possible permutations is:

$$n + n^2 + n^3 + \dots + n' = n (n'-1) / (n-1)$$

- 51. Apply change of base rule.
- 52. In an equation with rational coefficients, irrational roots and complex roots occur in pairs.

So,
$$\sqrt{5} + \sqrt{7} + i$$
 as a root implies $-\sqrt{5} + \sqrt{7} + i$, $-\sqrt{5} - \sqrt{7} + i$, $\sqrt{5} - \sqrt{7} + i$, $-\sqrt{5} - \sqrt{7}$

-i, $-\sqrt{5}-\sqrt{7}-i$, $\sqrt{5}-\sqrt{7}-i$, $\sqrt{5}+\sqrt{7}-i$, are also roots. An equation of degree n has exactly n roots (with possible repetition of some roots). Hence the answer.

- 53. By Descarte's rule of signs, the number of positive real roots can't be more than the number of changes of sign in f(x), in this case 3, as there are 3 change of signs in f(x). The number of negative roots can't be more than the number of change of signs in f(-x), i.e., 2 in this case. So, altogether it can't have more than 5 real roots (obviously 0 is not a root). But this being a polynomial of degree 7, must have 7 roots. So, at least 2 imaginary roots must be present.
- **54.** If you draw the graph of f(x) between x = a and x = b, it should cut the x-axis either 0 or even number of times. It will have as many roots as the number of times it is cutting the x-axis.
- 55. Ref Qn. 53. It cannot have more than 3 real roots. In an equation with real coefficients, imaginary roots occur in pairs. Here f(0) and $f(\infty)$ are negative. So in the interval $(0, \infty)$ there can be none or even number of roots. Since f(-1) is positive, it should have at least one root in (-1, 0). Since f(0) is negative and $f(\infty)$ is positive, it has at least 2 real roots, and not more than three. So, it has to be 3 because if it is 2, the number of imaginary roots will be 3, which is infeasible (since imaginary roots occur in pairs).
- **56.** $f(-\infty)$ is positive and $f(+\infty)$ is also positive. But f(0) is negative. So, it should have at least 1 root between $(-\infty, 0)$ and at least one root between $(0, +\infty)$.
- 57. The remainder on division will be a first degree polynomial. Let it be Mx + N. So $f(x) = (x - \alpha)(x - \beta)Q + (Mx + N)$. (Q is the quotient). Putting $x = \alpha$, $f(\alpha) = M\alpha + N$ and $f(\beta) = M\beta + N$. Solving we get the answer.
- 58. If the base is greater than 1, it will be $-\infty$. If the base is less than 1, it will be $+\infty$. If the base is 1, it will be undefined.
- **59.** We have $x^n + nax b = (x a_1)(x a_2) \dots (x a_n)$ Differentiating both sides with respect to x and putting $x = a_1$, we get the result.
- **61.** |a b| < n implies -n < a b < n|b-c| < m implies -m < b-c < mAdding both these inequalities, -(n+m) < a-c < n+m, which is nothing but |a-c| < n+m.
- 63. A may win in the first or second ... or nth toss. So, the required probability is $(1/2) + (1/2)^3 +$ (1/2)⁵ + ... Summation of this geometric progression is 2/3.
- 64. Any number can be expressed as the product of prime numbers in a unique way. So, 200! written in this form will have a certain number of 2's and 5's. The number of 2's will be more than the number of 5's as each even number contributes at least one 2. The only way to get a 0 is to multiply a 2 by 5. The number of 5's will decide the number of zeroes. The numbers 5, 10, 15, ... 200 each contribute one 5. This totals to 40. The numbers 25, 50, ..., 200 will contribute one more 5. The number 125 will contribute yet another. So, totally 40 + 8 + 1 = 49 zeroes.
- 65. Consider a n x n matrix. To find the determinant, we have to multiply each element of the first row, with its cofactor. The cofactor is the determinant value of a $(n-1) \times (n-1)$ matrix. The number of terms in the determinant value of a $n \times n$ matrix, $T(n) = n T(n-1) = n \times (n-1)$ $T(n-2) \dots = n!$ Here n! is given as 720. So, n is 6.
- **67.** It is defined if |x| x > 0, i.e., |x| > x. If $x \ge 0$, |x| = x. So, x > x, which has no feasible solution. If x < 0, |x| = -x. So, -x > x, which has the solution x < 0.
- **68.** The probability that the first ball drawn is white and the second black is $(10/25) \times (15/24) =$ 1/4.

The probability that the first ball drawn is black and the second white is $(15/25) \times (10/24) = 14$. So, the required probability is 1/4 + 1/4 = 1/2.

- **69.** The iterative formula is $x_{k+1} = x_k + f(x_k) / f'(x_k)$. Here $x = \sqrt{b}$, i.e., $x^2 b = 0$. Taking $f(x) = x^2 b$, we get the answer.
- 72. The required value of x is, $x = -\sqrt{20 + x}$. Solving, we get x = -4 or 5.
- 73. $P(\overline{A} \cap \overline{B}) = 1 P(A \cup B) = 1 (P(A) + P(B) + P(A \cap B)) = 0.39.$
- 74. By Lagrange's mean value theorem, in the interval [0,5], there must exist a constant C in (0, 5) such that g'(C) = (g(5) g(0)) / (5-0) = -5/6
- 76. The first element of A may be mapped to any one of the n elements of B. The second element to any one of the remaining n-1 elements. Proceeding this way, the m^{th} element can be mapped to one of the remaining (n-m+1) elements of B. So, we have $n \times (n-1) \times (n-2) \times \dots (n-m+1) = {}^{n}P_{m}$ possible ways.
- 77. In a set, order of the members and repetition is immaterial.
- 80. It is not reflexive as -3 R -3 is not true. It is not irreflexive as 2 R 2 is true. It is not symmetric as -3 R 3, but 3 R -3 is not true. It is anti-symmetric as, if a Rb and b Ra are both true, then a = b.
- 81. We have 1 R 2 and 2 R 1, but 1 R 1 is not true. So, R is not transitive. We have 4 R 3, but 3 R 4 is not true. So, R is not symmetric. Also, 1 R 2 and 2 R 1, but 1 ≠ 2. So, R is not antisymmetric.
- 82. A relation is a function if and only if each element in the domain has a unique image. (a) is not a function as the element 1 has two images 2 and 3. (d) is not a function as the element 3 in the domain has no image.
- 86. All three can be proved by Pigeon-hole principle.
- **93.** The roots are given by $x = \left(-b \pm \sqrt{b^2 4ac}\right)/2a$

Differentiating both sides, treating c as a variable, $dx = dc/\sqrt{b^2 - 4ac}$

For dx to be less than 5×10^{-5} , dc should be to the accuracy of approximately 8×10^{-5} (check by putting b = -2, a = 1 and $c = \log 2$, and solving the above equation).

- 94. The determinant of a matrix equals the product of its eigenvalues.
- 95. M has n rows. If all the elements of a row are multiplied by 2, the determinant value becomes 2 x 5. Multiplying all the n rows by 2, will make the determinant value 2ⁿ x 5 = 40. Solving, n = 3.
- 98. To ensure 5 digit accuracy, the error term $x^{2n+2}/(2n+2)!$ should be less than 5×10^{-6} Solving, we get n = 7.
- 102. All are parallel lines, but only the second line has chances of bounding the convex region.
- 119. Substitute and verify. The solution can also be obtained like this—The complementary equation is $D^2 + 3D + 2 = 0$. This has D = -1, -2 as the roots. Hence the solution is: $C_1e^{-x} + C_2e^{-2x}$.

- 120. By definition ¬P ⇒ Q is true means that ¬(¬P) V Q is true. The proposition ¬P V (P ⇒ Q) is nothing but ¬P V (¬P V Q), i.e., ¬P V Q. The trueness or the falsity of this cannot be determined from the given proposition.
- 121. 600 = 5 × 5 × 3 × 2 × 2 × 2. Any factor of 600 can be obtained by choosing 1, 2, 3 or not two's at all, i.e., 4 ways of selecting two. Similarly, there are 2 ways of choosing 3, and 3 ways of choosing 5. So, there are altogether 4 × 2 × 3 = 24 different ways. This includes 1 (corresponding to choosing no two's, no three's and no five's) as well as 600 (by choosing all the 2's, 3's and 5's).
- 122. It can be written as $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 4+1 & 5+2 & 6+3 \end{pmatrix}$

So,
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 2 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 7 & 3 \end{vmatrix} + \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 4 & 5 & 6 \end{vmatrix} = 0 + 0 = 0$$

- 123. None of the elementary operations affects the rank.
- 125. The order of a subgroup should divide the order of the group. 11 being a prime number, number has no proper divisor and hence it can't have any proper sub-group.
- 126. We have $(AB)^t = B^t A^t$. Since A and B are symmetric matrices, $A^t = A$ and $B^t = B$. Hence the answer.
- **128.** $P(A \cup B) = P(A) + P(B) P(A \cap B)$ i.e., $P(A \cup B) + P(A \cap B) = P(A) + P(B)$

Since $P(A \cap B)$ cannot be negative, $P(A \cup B) \le P(A) + P(B)$

130.
$$(x*y)^2 = (x*y)(x*y) = (x*y)(y*x) = x*(y*y) *x = x*y^2*x$$

= $x*x*y^2 = x^2*y^2$.

132. Number of strings of length 1 is n.

Number of strings of length 2 is n - 1.

Number of strings of length 3 is n-2, etc.

Number of strings of length n-1 is 2.

Number of strings of length n is 1.

Totally, $1 + 2 + 3 \dots + n = n(n+1) / 2$

- 134. We have 2R5 and 5R2. If it is transitive, then 2R2, but it is not, as 2R2 means 2 is not equal to 2, which is wrong.
- 136. $A = (A \cap B) \cup (A \cap \overline{B}).$ $P(A) = P(A \cap B) + P(A \cap \overline{B})$ = Q + R
- 142. 1 is the identity element as 1 LCM a = a LCM 1 = a, for any a belonging to the set. What is the inverse of 3? If it is y, then 3 LCM y = y LCM 3 = 1. No such y can be found.
- 143. 24 is the identity element, as 24 GCD x = x GCD 24 = x, for any x belonging to the set. But inverse doesn't exist.

- **145.** The total number of possible functions is n^m . If it is to be 10, then n = 10 and m = 1.
- **147.** g(-x) = f(-x)[f(-x) + f(x)]. If f is even then f(-x) = f(x). So, g(-x) = f(x)[f(x) + f(-x)] = g(x). Hence g is even if f is even.
- **150.** ω is a generator, as all the cube roots of unity can be expressed as powers of ω . For similar reasons, ω^2 is also a generator, as $\omega = (\omega^2)^2$ and $1 = (\omega^2)^3$.
- **151.** $x \log x = \log x / (1/x)$. Apply L'Hospital's rule.
- 152. Whenever f(a) and f(b) are of different signs, then f has odd number of roots (at least one) between a and b.

153. Let
$$S = x + 2x^2 + 3x^3 + ...$$

 $xS = x^2 + 2x^3 + ...$
 $S - xS = x + x^2 + x^3 + ... = x(1 - x^n) / (1 - x) = x / (1 - x)$
 $(1 - x)S = x / (1 - x)$. So, $S = x / (1 - x)^2$.

Another way of doing this is:

So
$$S = \sum kx^{k-1} = d/dx \sum x^k = d/dx [x/(1-x)] = 1/(1-x)^2$$

So $S = x / (1-x)^2$

- **154.** A linear transformation F satisfies F(mx, my) = mF(x, y) and F(a + b, c + d) = F(a, c) + F(b, d). Option (b) does not satisfy this while the others do.
- 155. Eigenvalue m satisfies the equation |A mI| = 0. Put m = 0. We get |A| = 0, which is given to be true. So, m = 0 is an eigenvalue.
- **165.** Each print is a k-tuple I1, I2..., Ik such that $N \ge I1 \ge I2 \ge ... \ge I_k \ge 1$.

Hence the problem reduces to choosing k integers, with repetitions allowed, from 1, 2, 3..., N — which is $k + N - 1C_k$. This is because any such selection, if written in ascending order will satisfy the conditions and any solution will be a selection.

- 170. Square of an odd number is an odd number. Square of an even number is an even number. If you add two odd numbers, you get an even number. As a result, (odd number)² + (odd number)² = even number. Since no even number can be a square of an odd number, options a, b, and c, cannot be correct.
- 171. Square of an odd number is an odd number. Square of an even number is an even number. If you add two even numbers, you get an even number. As a result, (even number)² + (even number)² = even number. Since no even number can be a square of an odd number, options a, b, and c, cannot be correct.
- 172. You can verify by constructing truth table for an implication, say, P → Q and its contrapositive Q → P
- 174. Let us prime factorize the number. 637245 is 5 × 3 × 3 × 7 × 7 × 17 × 17. The word we are looking for must have the letter corresponding to 17, which is Q.
- 175. Let us prime factorize the number. 124950 = 5 × 5 × 2 × 3 × 7 × 7 × 17. The word we are looking for must have the letter corresponding to 17, which is Q. It is not a bad idea to guess Q will be immediately followed by a U. The code for U is 21. We are left with 5 × 5 × 2 × 7. If the remaining letters are 4, it has to be E, E, B, G. But there is no 6-letter word with the letters Q, U, E, E, B, G. So, let us assume that there are only 3 remaining letters. The possible codes for these 3 letters are (25,2,7), (10,5,7), (5,5,14). This means the possible

- letters are (Y, B, G), (J, E, G), (E, E, N). Remember Q and U are the other 2 letters. It is not difficult to find (E, E, N) is the correct one and the word is QUEEN.
- 176. Let us prime factorize the number. 3135 = 3 × 5 × 11 × 19. The alphabet with the code 19 must be present in the word we are looking for. It is S. The alphabet with the code 11 must also be present in the word we are looking for. It is K. We are left with the factors 3 and 5. They may account for the single alphabet O (this has the code 15) or they may account for the alphabets C and E. Let us pursue our search with the alphabet O. We are looking for a word made up of the letters S, K, O. No such word exists. Since 3125 is same as 3125 × 1, the alphabet with code 1 can be used. So the alphabet A can also be used. So, we are looking for a word made up of S, K, O, A. The word is SOAK. If 3 and 5 account for the alphabets C and E, we are looking for a word made up of S, K, C, E. Since the alphabet A can also be used, the word is CAKES.
- 177. Let us prime factorize the number. 1265 = 5 × 11 × 23. The alphabet with the code 23 must be present in the word we are looking for. It is W. The alphabet with the code 11 must also be present in the word we are looking for. It is K. We are left with the factor 5. It represents the alphabet E. We are looking for a word made up of the letters—W, K, E. No such word exists. Including the alphabet A, we are looking for a word made up of the letters—W, K, E and A. It could be WEAK or WAKE.
- 178. The largest 10-digit number is 9876543210, which is not the correct answer as it is not divisible by 4. Note that a number is divisible by 4 if the last two digits are divisible by 4. The number we are looking for cannot be got by swapping the 1 and 0. Let us try permuting the last 3 digits—2, 1, and 0. Since we are for the largest number, we need to try in the order—120, 102, 021, 012. Since 120 is divisible by 4, the correct answer is 9876543120.
- 179. The largest 10-digit number is 9876543210, which is not the correct answer as it is not divisible by 8. Note that a number is divisible by 8 if the last three digits are divisible by 8. The number we are looking for cannot be got by swapping the 1 and 0. Let us try permuting the last 3 digits—2, 1, and 0. Since we are looking for the largest number, we need to try in the order—120, 102, 021, 012. Since 120 is divisible by 8, the correct answer is 9876543120.
- 180. The smallest 10-digit positive number is 1023456789, which is not the correct answer as it is not divisible by 8. Note that a number is divisible by 8 if the last three digits are divisible by 8. The number we are looking for cannot be got by swapping the 1 and 0. Let us try permuting the last 3 digits—7, 8, and 9. Since we are for the smallest number, we need to try in the order—789, 798, 879, 897, 978, 987. none of these is divisible by 8. Let us enlarge our search domain by permuting the last 4 digits—6, 7, 8, and 9. We need to try in the order—6789, 6798, 6879, 6897, 6978, 6987, 7689, 7698, 7869, 7896, 7968, 7986 etc., The first number in this order that is divisible by 8 is 7896. So, the number we are looking for is 1023457896.
- 181. A number is divisible by 11 if the difference of the sum of the numerals in the odd numbered positions and the sum of the numerals in the even numbered positions is divisible by 11. Consider the largest number—9876543210. The sum of the numerals in the odd numbered positions is 25 (9+7+5+3+1). The sum of the numerals in the even numbered positions is 20 (8+6+4+2+0). The difference is 5, which is not divisible by 11. So, 9876543210 is not divisible by 11. We have to permute the numerals so that the sum of the numerals in the odd numbered positions becomes 28. This is because the sum of the numerals in the even numbered positions will then become 17, making the difference 11, which is divisible by 11. This

can be achieved by swapping 4 and 1. The number is 9876513240. This is divisible by 11. The numerals in the odd numbered positions are 9, 7, 5, 3, 4. Arranging them descending order (because we are in the look out for the largest number), we get 9, 7, 5, 4, 3, as the correct order of the numerals in the odd numbered positions. Doing the same with numerals in the even numbered positions, the correct order of the numerals in the even numbered positions will be 8, 6, 2, 1, 0. Therefore the largest 10-digit integer, containing all the numerals 1,2,3,4,5,6,7,8,9,0 that is divisible by 11 is 9876524130.

- 185. Each cut should give him a face of the cube. A cube has 6 faces.
- 186. To get as many pieces as possible, each line must cut all the existing lines at the non-intersecting points.

187. To get as many pieces as possible, each line must cut all the existing lines at non-intersecting points.

188. A diagram will make it easy to comprehend.

It is easy to find that the can labeled 25 Paise must have 5 paise coins in it. So, the can labeled 10 Paise, must have 25 paise coins in it.

189. The can labeled 5/10 paise.

A diagram will make it easy to comprehend.

The can labeled 5/10 Paise will have either all 5 paise or all 10 paise. If the coin you inspected is a 5 paise coin, the can labeled 5 Paise must have the 10 Paise coins in it. If the coin you inspected is a 10 Paise coin, that is the can you are looking for.

- 190. There are 5! ways of distributing the 5 letters to the 5 envelopes. Out of these, there is only one way that correctly distributes the letters to the envelopes.
- 191. In 1 hour, Priya can walk to her school 10 times.
- 192. Let m be the number of tests he took. His average is $\frac{45 + (m-9) \times 10}{m}$

Equating the average to 9 and solving for m, we get m = 45.

- 193. A = 6, B = 8, X = 5, and Y = 9 is another possible answer.
- 194. 1 machine can cut 10 papers in 10 minutes.

1 machine can cut 1 paper in 1 minute.

20 machines can cut 20 papers in 1 minute.

20 machines can cut 200 papers in 10 minutes.

Another way to reason out is to consider the 20 machines as two groups of 10 machines each. Each group can cut 100 papers in 10 minutes. So, together they can cut 200 papers in 10 minutes. So, the statement—10 machines can cut 100 papers in 10 minutes, expressed algebraically is, 100 machine-minutes is equivalent to 100 papers. The question expressed algebraically is, finding the number of minutes (let us call it) m, such that $20 \times m = 200$.

- 195. 1 machine can cut 10 papers in 10 minutes.
 - 1 machine in 1 minute can cut 1 paper.
 - 5 machines in 1 minute can cut 5 papers.
 - 5 machines in 60 minutes can cut 300 papers.

Another way to reason out is to understand the fact that what could be done by 5 machines in 1 hour is essentially same what could be done by 10 machines in 30 minutes.

So, the statement—10 machines can cut 100 papers in 10 minutes, expressed algebraically is, 100 machine-minutes is equivalent to 100 papers. The question expressed algebraically is, what is the equivalent of 300 machine-minutes (the 300 is 5 machines × 60 minutes).

- 196. It is obvious that Varma runs faster than Patil. By the time Varma finished running 80 meters, Patil could run only 70 meters. By giving a head start of 10 meters, they will be tied when they are 20 meters to the finish line. Since Varma runs faster than Patil, he will cover the remaining 20 meters before Patil.
- 197. The least common multiple of 5, 7, and 9 is 315. If the six-digit number 123ABC is exactly divisible by 5, 7, and 9, it has to be a multiple of 315. The number 123ABC can be written as 123000 + ABC. Dividing 123000 by 315 leaves the remainder 150. So, ABC must leave a remainder of 165 when divided by 315. This gives us the number 123165. Adding 315 or any multiple of it still gives us a number exactly divisible by 5, 7, and 9. So, there are 3 possible numbers 123165, 123480 (123165+315), and 123795 (123165+315+315).
- 198. Let the length of the train be A.

A = 1/20 km.

Let the length of the tunnel be C.

A+C = 1/2 km.

So, the length of the tunnel is 9/20 km. i.e., 450 meters.

199. First assume only Mani's statement is true. The story with this assumption reads ...

Subbu ate it. Joshi didn't eat it. Kumar ate it...

This is a contradiction. So Mani's statement is not true.

Assume only Subbu's statement is true. The story with this assumption reads ...

Subbu didn't eat it. Joshi ate it. Kumar ate it...

This is also a contradiction. So Subbu's statement is also not true.

Assume only Kumar's statement is true. The story with this assumption reads ...

Subbu didn't eat it. Joshi didn't eat it. Kumar didn't eat it. Joshi ate it.

This is also a contradiction. So Joshi's statement is also not true.

Assume only Joshi's statement is true. The story with this assumption reads ...

Subbu didn't eat it. Joshi didn't eat it. Kumar atc it. Joshi didn't eat it.

This is not a contradiction. So Joshi's statement is the true statement. Accordingly, Kumar ate it.

200. Addition of two 2-digit numbers cannot be greater than 198. So, C is 1.

AB can be written as 10A + B.

So, AB + BA = 1A1 can be written as (10A + B) + (10B+A) = 100 + 10A + 1Simplifying,

11B = 101 - A

Since 11B is a multiple of 11, 101-A has to be a multiple of 11. This can happen only if A is 2. So, C=1, A=2, B=9. Hence A + B + C is 12.

201. Fill the 5 liter can.

Pour it into the 3 liter can.

The 5 liter can will be left with 2 liters of water.

Empty the 3 liter can.

Transfer the 2 liters in the 5 liter can to the 3 liter can.

The 5 liter can is now empty.

Fill it from the bucket.

Fill the 3 liter can (which is having 2 liter now) from the 5 liter can.

What is left in the 5 liter can will be 4 liters.

202. No generality is lost by assuming, Raman ran towards the closer end of the tunnel, say A, and Gopal ran towards the farther end of the tunnel, say B. Let the length of the tunnel be y miles. Time taken by Raman to reach the end of the tunnel is 2y/75 hours (since distance traveled is 2y/5 and the speed is 15 miles/hour). Time taken by Gopal to reach the far end of the tunnel is 3y/75 hours (since distance traveled is 3y/5 and the speed is 15 miles/hour).

The train entered the tunnel when Raman just reached it and the train was at the other end of the tunnel when Gopal just reached it. This means the train took 3y/75 - 2y/75 = y/7; hours to cover the tunnel.

Speed of the train = Distance covered / Time taken to cover

Distance covered is y miles.

Time taken is y/75.

Therefore, the speed of the train is 75 miles/hour.

- 203. Let us call the bulbs A, B, and C. Switch on one of them, say A. Wait for a couple of minutes and switch it off. Now, switch on another bulb, say B, and enter the room. The bulb that is glowing corresponds to the switch B. Touch the other 2 bulbs. The one that is warmer corresponds to the switch A. The left out bulb corresponds to the switch C.
- 204. Find the time taken for the bikes to collide. It is 2 hours. Distance traveled by the bird in 2 hours is, 200km.
- 205. The standard weights are 1kg, 3kg, and 4kg.
- 206. The shortest distance between the two squares is 10m. To cover this distance using the minimum number of metal sheets, the sheets have to welded diagonally. The diagonal measures √2. So, we need 10/√2 sheets. So, we need 8 sheets.
- 208. The weights are 1kg, 3kg, 9kg, and 27kg. With these weights he can weigh anything between 1 - 40kg as a whole number.
- **209.** $P(A \cup B) = P(A) + P(B) P(A \cap B)$ $P(A \cap B) = 0.5 + 0.6 - 0.7 = 0.4$
- **212.** f'(x) = 4x 2. f(x) increases if f'(x)>0. i.e., f(x) increases if $x>\frac{1}{2}$. So, maximum value is attained at x = 2.
- 213. $\sqrt{2r^2+2r+4} = r+3$. Solving, r = 5 or -1. Since negative radix is illogical, r = 5.
- 214. {(1,1), (2,2), (3,3), (4,4)} is an equivalence relation and part (subset) of any other set that is an equivalence relation, as any equivalence relation has to be reflexive.

We cannot construct another equivalence relation by adding a single ordered pair as symmetric property should hold good. Let us find how many equivalence relations can be got by adding 2 ordered pairs. If we add (1,2), we need to add (2,1), to satisfy the symmetric property. Since there are 4 elements, 2 elements can be selected in ${}^4C_2 = 6$ ways. Similarly, some equivalence relations can be got by adding 4 ordered pairs, like adding (1,2), (2,1), (3,4), (4,3). Possible cases covered under these category is ${}^4C_2 / 2 = 3$ ways. Likewise the number of possible equivalence relations that can be got by adding 6 ordered pairs, like (1,2), (2,3), (3,1), (2,1), (3,2), (1,3), will be ${}^4C_3 = 4$. There is only one possible equivalence relation by adding 8 ordered pairs. So, totally 15 possible equivalence relations can be got.